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Abstract. We study the equilibration of an initial surface misoriented relative to a high-symmetry
(low-energy) direction. The surface considered consists of parallel monatomic ledges separated
by terraces. Both repulsive and attractive interactions between step pairs are taken into account.
Repulsive interactions between steps are assumed to vary as`−2 and attractive interactions to vary
as`−1 where` is the average step separation between neighbouring steps. Attractive interactions
lead to step bunching, and as a consequence the resulting morphology is in the form of macro-steps
separated by large flat terraces. The time dependence of flat parts that separates the macro-steps
(step bunches) is not expressible as a simple analytic function.

1. Introduction

The study of the morphology of solid surfaces is important in a number of surface processes
such as crystal growth, epitaxy, and etching. Even for a qualitative comprehension of these
processes it is necessary to understand the equilibrium structure of surfaces. The equilibrium
shape of the crystal is determined by minimizing the surface free energy [1, 2]. The surface
tensionγ (n̂) (surface free energy) is not an analytic function of surface orientationn̂ below
its roughening temperatureTR [3], the temperature at which the cusps in the surface tension
disappear or equivalently the temperature above which a free energy associated with an atomic
step can no longer be defined. As a consequence of the anisotropy of the surface free energy,
a surface of minimum area is not necessarily the morphology required to minimize it. Indeed,
the thermodynamics of solid surfaces predicts that surfaces of arbitrary orientation can be
thermodynamically unstable with respect to the break-up, or faceting, into surfaces of different
orientations, namely the ‘hill-and-valley’ structure [4] (see figure 1). The existence of such
formations has been observed experimentally [5–8]. At the temperatures of interest in this
study, namely at temperatures well below the roughening temperature, the surface consists
of mainly monatomic steps separated by terraces. Steps are important entities in growth and
equilibration processes because these processes occur only through the movement of steps
on the surface. One way of characterizing the transition of the surface from a morphology
of high energy to a morphology of low energy but not necessarily the minimum surface area
is to consider explicitly the behaviour of atomic steps on the surfaces and investigate their
motion in the course of the surface advancing towards the equilibrium shape. The motion
of steps occurs through the attachment of atoms to or detachment of atoms from the step
edges (see figure 2). To fully explore the motion of monatomic steps, a detailed knowledge
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Figure 1. Break-up of a flat surface into a ‘hill-and-valley’ structure to minimize the surface
free energy. For the case depicted, the flat surface in (a) is unstable with respect to faceting
and undergoes break-up into a hill-and-valley structure in (b) whereby the surface tension is
minimized. The requirement for break-up is that the average surface orientationA0n̂0 =
Aan̂a + Abn̂b must be conserved and there must be a reduction in the surface free energy
A0γ (n̂0) > Aaγ (n̂a) +Abγ (n̂b) [4].

Figure 2. The labelling of steps and terraces and the definitions ofk±, the kinetic coefficients for
adatom attachment to or detachment from a step from or to the two bounding terraces. Steps whose
heights always decrease (or increase) as one goes in a certain direction on the surface are called
‘like’ steps. The macroscopic orientation of the surface must be conserved in this process.

of the form of step–step interactions is essential. Repulsive interaction between pairs of ‘like’
steps on a vicinal surface which goes as the inverse square of the average step separation may
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result from elastic [9–11] or entropic [12] interactions. Entropic interactions, studied first by
Gruber and Mullins [12], result from the wandering of steps caused by the thermal excitation
of kinks at non-zero temperatures, which increases the configuration entropy of steps and
thereby reduces the step free energy. Besides the repulsive interactions, experimental studies
of equilibrium shapes dictate that there must exist attractive interactions between steps which
fall off inversely with the average distance between steps, for which unfortunately a satisfactory
theoretical explanation is not yet completely achieved. Saenz and Garcia [13] indicated the
necessity of having such an interaction in order to explain the experimentally observed [14]
equilibrium shape of gold crystallites. Further experiments on the equilibrium shape of indium
crystallites by Metois and Heyraud [15] also suggest that inclusion of such a term gives a
better fit of theoretical predictions to the observed shapes. Other recent experimental [16] and
theoretical [17] studies also do not exclude the possibility of attractive interactions between
step pairs. Scanning tunnelling microscopy experiments on Cu(100) surfaces by Ibach and co-
workers [16] clearly demonstrate that attractive interactions between steps must exist to account
for the equilibrium shape observed. Redfield and Zangwill [17] predict an attractive interaction
which falls off as the square of the distance between the steps, while an attractive interaction
varying as the inverse of the distance between the steps was predicted earlier by Yamamoto
and Izuyama [18] to explain the experimental study mentioned earlier [14]. Accordingly,
the subject of this paper is the investigation of the final equilibrium morphology of an initial
crystalline surface misoriented relative to a low-energy direction and consisting of monatomic
steps when, in addition to entropic repulsive interactions, an attractive interaction of the form
`−1, where` is the average step separation, exists between step pairs. It is expected that while
repulsive interactions only lead to the flattening of the surface in the direction that corresponds
to the minimum-surface-energy orientation, inclusion of attractive interactions must create step
bunches on the surface in the form of macro-steps separated by large flat portions as observed
in the experiments on Si surfaces [5–8]. Theoretical studies of this subject were carried out
by Tersoffet al [19], who assumed a logarithmic interaction between step pairs, and more
recently by Jeong and Weeks [20], who took the dynamics of surface reconstruction explicitly
into account.

The plan of this paper is as follows. In section 2 we derive the equations of motion for
each individual step on the surface in the presence of both attractive and repulsive interactions
between step pairs. Section 3 is devoted to the numerical solution of these equations. The
resulting surface morphology and the time dependence of the evolution are presented and
compared with experimental results. Section 4 contains conclusions and a summary.

2. Equations of motion

In this section, we derive the equations of motion for each step on the surface. We consider
a surface misoriented with respect to a high-index plane in one direction only. Hence the
geometry is essentially one dimensional and parallel straight steps are separated by terraces.
A portion of the surface studied is shown in figure 2. For the geometry considered, the only
driving force for the motion of the steps is provided by the step–step interactions. For the case
of repulsive step interactions only, the equations of motion were derived elsewhere [21,22] and
solved completely [22]. Here we only add an attractive interaction of the form`−1 between pairs
of ‘like’ steps (see figure 2). Let us consider a one-dimensional surface of lengthL =∑n `n
consisting of atomic steps of heighth where`n denotes the actual length of each individual
terracen. At small angles of misorientationθ of the actual surface with surfaces of high-
symmetry (low-Miller-index) planes along which the surface tension has minima in the form
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of cusps, one can expand theprojectedsurface tensionG as

G = G0 +G1|tanθ | − 1
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The first term in the above expansion is the surface energy per unit area of the low-index
surface, the second term can be interpreted as the sum of individual-step free energies since
the slope tanθ is proportional to the step density, and finally the third and the fourth terms are
the totalattractiveand repulsive energies of interaction between pairs of steps, respectively.
The constantsGi appearing in the above equation are temperature dependent. The dependence
of G1 on temperature comes from the fact that at non-zero temperatures kinks at step edges
may be excited. The formation of kinks in turn allows the step to wander, thus increasing
its configurational entropy and hence reducing its free energy. This term is absent above the
roughening temperature because a step can no longer be defined. The fourth term in equation (1)
represents entropic interactions between step pairs which result from step fluctuations and
the restriction imposed on the fluctuations by the impossibility of two steps crossing each
other [12]. To be more definite, we consider a step bounded by two solid walls from above
and from below. The number of different configurations that can be realized by that step is
restricted by the bounding walls; hence the step has less entropy than it would have if the
step were free to make fluctuations of any amplitude. The increase in free energy results
in an effective repulsive interaction between the steps. The new term in this expansion, the
third term, represents an effective attractive interaction between step pairs. The origin of
that interaction is not yet completely understood, but is needed to explain the experimental
equilibrium shapes of small crystallites noted earlier [13–15]. We will assume that such an
interaction between step pairs exists, without providing any solid theoretical justification.

The motion of a particular step on the surface occurs through the attachment of adatoms
to or detachment of atoms from the step edges from or to the two bounding terraces (figure 2).
Creating such a virtual variation in the surface by a transfer of particles to a step labelledn,
one can easily show that the variation in the projected surface energy (1) is given by
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where1` is the variation innth terrace length̀n in the direction perpendicular to the average
step orientation. The above equation defines a step potentialµ = δG/δN [21,22]:
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whereδN is the number of particles transferred in the virtual displacement of the step described
above,� is the atomic volume, and

K2 = 1

2
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L
and K3 = 1
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�h2

L
.

The steady-state diffusion equation

∂Cn

∂t
= Ds

∂2Cn

∂x2
= 0 (4)

whereDs is the surface diffusion constant must be solved for each terracen in order to compute
the velocity of the steps. It is assumed that any flux of atoms to the surface from a third
dimension is completely arrested, so there are no additional terms in the diffusion equation.
The diffusion equation is solved by

Cn(x) = an + bnx xn 6 x 6 xn+1 (5)
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for each terrace, wherean and bn are constants. Using appropriate boundary conditions
following from mass-conservation equations and expressing the velocity of a step edge in
terms of the variations of free energy due to particle attachment to or detachment from a step
edge from the bounding two terraces, one can solve for thebn given by [22]

bn = µn+1− µn
νDs(1/k+ + 1/k−) + (∂µ̄/∂C)(xn+1− xn) = (∂µ̄/∂C)

−1µn+1− µn
d + `n

. (6)

In the above equation,̀n = xn+1− xn is the width of thenth terrace,

d = νDs(1/k+ + 1/k−)(∂µ̄/∂C)−1

is a parameter in units of length,ν is the inverse of the areal density of diffusing particles
on the surface [23],k± are the kinetic coefficients for adatom attachment to or detachment
from a step from or to the two bounding terraces (figure 2) andµ̄ is the chemical potential of
an atom adsorbed on a terrace. Only thebn are needed to calculate the velocities of the step
edges [21,22]:

vn = νDs(bn − bn−1) (7)

and the equation of motion for each terrace width`n takes the form

˙̀
n(t) = νDs(bn+1− 2bn + bn−1)

= K
[(
µn+2− µn+1

d + `n+1

)
− 2

(
µn+1− µn
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)
+

(
µn − µn−1

d + `n−1

)]
(8)

whereK = νDs(∂µ̄/∂C)
−1. In the derivation of these equations, it is implicitly assumed that

the steps are above their roughening temperature with the result that a step behaves like a line
sink for the particles diffusing across terraces. As one can see from the above equation, the
variation of a terrace width depends on the widths of the two neighbouring terraces on each
side. An analytical solution of equation (8) in the absence of attractive interactions is possible
provided that the initial surface has a certain well defined shape, and in that case the solution is
shape preserving [22]. In the presence of attractive interactions also, however, it becomes an
equation which is not easy to handle and therefore we will resort to solving it numerically. We
can consider two distinct limiting cases for the evolution of terraces depending on the relative
values of the length parameterd defined in equation (6) and the average step separations`;
that is, one can consider (a) a ‘diffusion-limited’ (d � `) and (b) a ‘step-attachment-limited’
(d � `) regime of step motions.

Let us briefly mention that in the case of repulsive interactions only, the evolutions of
terrace widths for the cases (a) and (b) above go respectively as [22]`n(t) ∼ t1/5 and
`n(t) ∼ t1/4 for an initial surface of sinusoidal corrugation. Similarly, in the presence of
attractive interactions only, one can easily show that the evolutions of the terrace widths must
go as̀ n(t) ∼ t1/4 for the diffusion-limited regime and as̀n(t) ∼ t1/3 for the step-attachment-
limited regime for a similar initial surface.

Since equation (8) is not linear, superposition of solutions is not allowed and hence it is
not possible to make a satisfactory long-time prediction about the evolution of terrace widths in
the presence of both attractive and repulsive interactions using the combined equations given
in the previous paragraph. But one can clearly deduce that in the presence of both attractive
and repulsive interactions the enlargement of terrace widths cannot continue indefinitely. The
step separations have anequilibrium separation given by equation (9) below. Let us define
an average step separation as`av =

∑N
i `i/N whereN is the total number of steps on the

surface. Along the path towards equilibration, some terrace lengths will reach`eq , provided
that`av > `eq , after which they will remain in the vicinity of that position. For that reason,
after a finite time the surface must converge to a particular morphology and the evolution must



1920 M Ozdemir

come almost to a halt, after which no appreciable variation in the surface takes place (see
section 3). Consequently, a time dependence of terrace widths in the formtβ whereβ is a
positive number cannot be correct for all times. Despite this fact, we tried to fit the numerical
solutions for the terrace widths to a function of the formc1(1 + c2t)

β where the constantsc1,
c2, andβ are treated as adjustable parameters. The results are discussed in section 3.

3. Solution of the equations of motion

In this section we solve equations (8) numerically for a number of different configurations and
parameters. The two main parameters of the problem are:

(a) the lengthd defined in equation (6) which determines whether the evolution proceeds
in the ‘diffusion-limited’ (d � `) regime or in the ‘step-attachment-limited’ (d � `)
regime;

(b) the relative strength of the temperature-dependent coefficients of repulsive and attractive
interactions, namely the ratioK3/K2 defined in equation (3).

In the solution of these equations, periodic boundary conditions are used; that is, it is assumed
that`1 = `N whereN is the total number of steps. The initial surface is usually chosen as
having equally spaced monatomic steps and in that case the topmost step width is chosen to
be slightly greater than the rest of the step separations in order to facilitate the evolution.

Before we explain the numerical solutions in detail, let us note that there is anequilibrium
value for step separations noted above. If two neighbouring steps ever come to the equilibrium
separation, they will remain in that position unless other driving forces arise and force them
out of the equilibrium. The equilibrium separation can be obtained from equation (1) as

`eq = 2K3

K2
(9)

Figure 3. The evolution of an initial surface consisting of equally spaced monatomic steps obtained
from the numerical solutions of equations (8) for the case whereK3/K2 = 3, d = 1000, and
`av = 10 atomic units. The height of each surface is 100 atomic units and the horizontal length
in each is about 100̀av . The surface shown at the bottom is the initial one and the one at the top
is the shape of the final surface. Shown here are the surface morphologies at different times of the
evolution not spaced equally in time. The formation of double, triple, and multi-step bunches can
be seen if the sequence of surfaces from bottom to top are examined carefully.
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Figure 4. Typical terrace width evolution curves obtained by numerically solving equations (8).
The vertical axis is in atomic units while the horizontal axis is in arbitrary units, and the parameters
are the same as for figure 3. Shown here is the evolution at initial times. Only a few of the terraces
are shown, for clarity. Some terraces quickly approach the equilibrium separation (dotted curve)
while others first expand and later approach`eq (dashed, solid, and dash–dotted curves). And some
terrace widths continue the expansion as shown here (tiny-dashed curve). See also figure 5.

by minimizing the total interaction energy

U(`) = −K2

`
+
K3

`2
(10)

of a pair of steps of separatioǹ. We have chosenK3 > K2/2 throughout our calculations.
For all parameter values considered, regardless of whether we are considering the

diffusion-limited (d � `eq) or step-attachment-limited (d � `eq) regime, if the average step
separatioǹ av defined in section 2 is greater than`eq given in equation (9), then the evolution
proceeds qualitatively as follows. First, relatively quickly, pairs of steps at theequilibrium
separatioǹ eq are developed on the surface (see figures 3 and 4). At the same time, formation
of triple steps at a distance of approximately the equilibrium separation away from each other
starts. Later quadruple and multi-step bunches begin to appear. These formations can be
clearly identified if one carefully examines the sequence of surfaces depicted in figure 3 from
the bottom to the top. This process continues and eventually leads to a bunching of steps
of almost equilibrium separation given bỳeq at particular locations of the crystal surface.
The speed at which the step bunching takes place and the number of steps that may exist in
a step bunch (macro-step) is determined by the initial conditions (initial surface) and by the
parameters of the problem. At a given time, double, triple, and multi-step bunches separated
by terraces whose lengths are each greater than`eq may coexist. The step separation in each
bunch is very close tòeq . Figure 3 shows a typical time evolution of a surface where the initial
surface consists of equally spaced monatomic steps. The surfaces depicted are at different times
of the evolution and are not spaced equally in time. The surface shown at the bottom is the
initial one and that at the top is the final one. The coexistence of step bunches of different sizes
mentioned above can clearly be seen. Finally, for the case where the average step separation
is less than the equilibrium value (`av < `eq), no step bunching is observed. Such a surface is
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not in equilibrium and cannot reach a stable thermodynamic equilibrium unless, e.g., double
or greater step heights are allowed.

Following the above summary, let us first start with the time dependence of the terrace
widths`(t). There is no simple analytical expression for their time dependence. Our numerical
solutions show that while some steps quickly approach the equilibrium separation and remain in
the close vicinity of that position throughout the evolution, others start expanding and continue
the expansion for a while. Some of those terraces that tended to expand at the beginning may
approach the equilibrium separation later, and this usually corresponds to a merging of two
macro-steps to form another macro-step of size equal to the combined sizes of merged macro-
steps. The process of merging of two (or more) macro-steps, and hence the approach of some
of the terraces expanding until that time to the equilibrium separation, continues up to a point
where no further coalescence of macro-steps is possible. Then the surface locks to a final shape
and thereafter it shows no observable evolution. The final shape is in the form of macro-steps
separated by large flat terraces. (See the topmost surface in figure 3.) The number of steps that
are present in a macro-step and the lengths of the large terraces separating the macro-steps are
primarily determined by the initial shape (i.e. mass conservation) and by the relative strength
of the attractive and repulsive step interactions, namely by the ratioK3/K2. Typical terrace
width variation curves at the very beginning of the evolution are shown in figure 4. Some
terrace widths quickly approach the equilibrium separation (dotted curve) while others first
increase then later return to the equilibrium separation (dashed curve). On the other hand, some
of the terraces continue expanding (tiny-dashed curve) and some of them may approach the
equilibrium separation later in time (solid and dash–dotted curves). A variety of equilibration
curves are possible for terrace widths, but only a few representative ones are shown in figure 4
for the purpose of clarity.

Figure 5. Typical terrace evolution curves as in figure 4, but at intermediate times. The parameters
and axis definitions are the same as for figure 4. Note that some of the previously expanding terraces
approach the equilibrium separation while some others continue the expansion.

Figure 5 depicts the evolution of terrace widths at intermediate times. Note the similarity
with figure 4. Here some of the previously expanding terraces approach the equilibrium
separation (solid and tiny-dashed curves) while others continue to expand (dotted and dashed
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curves). These expanding terraces actually separate macro-steps on the surface shown in
figure 3. At later times some of those terraces that continued the expansion may approach
the equilibrium separation through the integration of two macro-steps. This whole process
of merging of (macro-) steps repeats until the surface reaches the final morphology (topmost
surface) shown in figure 3.

Figure 6. The complete time evolution of two of the large terraces remaining on the final surface
shown in figure 3. The vertical axis is in atomic units and the horizontal axis is in arbitrary units.
These and similar curves are fitted to a function of the formc1(1 + c2t)

β where the constants
are variational parameters. From many different fits, the exponentβ is found to be in the range
0.16–0.22.

Most of the terrace widths ultimately approach`eq , forming macro-step bunches separ-
ated by large terraces. Figure 6 shows the complete time dependence of two typical long flat
terraces that survived to the end of the evolution. These are two of the large terraces appearing
in figure 3 on the final surface. Note that the terrace widths shown in figure 6 increase quickly at
the beginning and more slowly later, and the whole evolution looks like a ladder, i.e. when the
overall evolution curves of terrace widths are considered, one sees instant increases in terrace
widths followed by long plateaus where the evolution proceeds very slowly (figure 6). These
impulsive increases in terrace widths are due to the mergings of pairs of macro-steps occurring
in such a way that the separation between the monatomic steps in the resulting macro-step
is still the equilibrium separation. But during the merging of the macro-steps, those terrace
widths that have already approached the equilibrium separation are sometimes driven out of
their equilibrium positions for a short duration and then later return to their original positions.
This causes momentary spikes in the terrace widths.

As can be deduced from the foregoing, the time dependence of terrace widths is not
expressible as a simple analytic function. A function of the formc1(1 + c2t)

β where the
constants are adjustable parameters is fitted to the terrace evolution curves for large terraces
such as the ones shown in figure 6. From many different fits that we made, a value forβ

in the range 0.16–0.22 is found. It appears that the functional fits are better for short times
and the deviation is more pronounced for later times. The numerical evolution curves for
terrace widths are more likely to resemble that found by Phaneufet al [7] experimentally
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rather than one given by an exponential function. The evolution takes place rather quickly
at the very beginning, slows down at later times, and eventually the surface locks to a final
shape after which there is no observable evolution. A similar investigation of crystal surface
evolution for surfaces under stress was carried out by Tersoffet al [19] assuming a logarithmic
attractive interaction between pairs of steps. Although the driving forces for step bunching are
different in each study, the morphology of the final surface that we have obtained in this work
is qualitatively very similar to theirs. But the value of the equilibrium step separation depends
on different parameters in this work and in their work, and hence the slopes of the surfaces
where step bunching took place are different.

We should also note that one can get an idea about the relative strengths of the coefficients
K2 andK3 from the final shape of the crystal surface by recognizing that the slope of the
macro-steps relative to the minimum-energy surface depends on the ratioK3/K2 through
equation (9). Hence an experimental determination of that slope may give one an idea of their
relative strengths at a given temperature. Furthermore, the variation of that slope as a function
of temperature will provide the dependence of the ratio of these parameters on temperature.
Another point that one notices is that the large flat parts and the macro-steps are separated
from each other by sharp corners, i.e. the slope of the surface at the intersection of these two
regions is not continuous.

Finally, let us note that the final surface morphology appears to be independent of the
parameterd, although this case was not investigated in very great detail. It does change
the time dependence of terrace widths and in fact preliminary work shows that for the step-
attachment-limited case the terrace widths are scaled approximately as`(t) = F(t/(d/`av))
provided that̀ av > `eq is satisfied by the initial surface. However, we have not analysed this
behaviour in detail.

4. Conclusions

In this paper we have investigated the equilibration of a surface initially oriented relative to
a low-energy surface at a small angle and consisting of monatomic steps. The problem is
investigated with the presence of both repulsive and attractive interactions between pairs of
steps. The resulting morphology is in the form of a ‘hill-and-valley’ structure predicted long
ago by Herring [4]. The time dependence of the large flat parts which separates macro-steps on
the surface is not expressible as a simple analytic function. While most of the terrace widths
quickly approach and remain in the close vicinity of`eq , the evolution for those terraces
separating two macro-steps proceeds with sharp increases in their widths followed by long
slowly varying plateaus. The abrupt increases in the terrace widths are due to the mergings
of pairs of macro-steps. A detailed knowledge of step interactions and their temperature
dependence is required for a better quantitative investigation of the problem.
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